首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   15篇
  国内免费   33篇
地球物理   110篇
地质学   123篇
海洋学   3篇
综合类   1篇
自然地理   11篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   4篇
  2015年   6篇
  2014年   4篇
  2013年   9篇
  2012年   8篇
  2011年   8篇
  2010年   6篇
  2009年   10篇
  2008年   22篇
  2007年   11篇
  2006年   9篇
  2005年   9篇
  2004年   14篇
  2003年   9篇
  2002年   10篇
  2001年   13篇
  2000年   9篇
  1999年   9篇
  1998年   5篇
  1997年   7篇
  1996年   6篇
  1995年   4篇
  1994年   9篇
  1993年   7篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1978年   1篇
排序方式: 共有248条查询结果,搜索用时 15 毫秒
211.
212.
Ascertaining the emplacement mechanism of oceanic basaltic lavas is important in understanding how ocean floor topography is produced and oceanic plates evolve, particularly during the early stages of crustal development of a supra-subduction zone. A detailed study of the volcanic stratigraphy at International Ocean Discovery Program (IODP) Site U1438 in the Amami Sankaku Basin, west of the Kyushu–Palau Ridge, has revealed the development of lava accretion and ridge topography on the Philippine Sea plate at about 49 Ma. Igneous basement rocks penetrated at Site U1438 are the uppermost 150 m of ~6 km-thick oceanic crust, and comprise, in a downhole direction, sheet flows (12.6 m), lobate sheet flows (61.3 m), pillow lavas (50.7 m), and thin sheet flows (25.3 m). The lowermost sheet flows are intercalated with layers of limestone and epiclastic tuff. Lithofacies analysis reveals that the lowermost sheet flows, limestone, and tuff formed on an axial rise, the pillow lavas were emplaced on a ridge slope, and the lobate sheet flows formed off ridge on an abyssal plain. The lithofacies of the basement basalt corresponds to the upper portions of fast-spreading oceanic crust, suggesting that subduction initiation was associated with intermediate to fast rates of seafloor spreading. The surface sheet flows are olivine–clinopyroxene-phyric basalt and differ from the lower basalt flows that contain phenocrysts of olivine and plagioclase, with or without clinopyroxene. The depleted chrome-spinel composition and olivine–clinopyroxene phenocryst assemblage in the surface sheet flows suggests a slight contribution of water for magma generation not present for the lower basalt flows. Considering the lithological difference between the backarc and forearc oceanic crust in the Izu–Bonin–Mariana arc, with sheet flow dominant in the former, seafloor spreading occurred faster in the later stage of subduction initiation.  相似文献   
213.
Antiquated stratigraphic and tectonic concepts on non‐metamorphic upper Palaeozoic and Mesozoic sequences in eastern Burma are revised.

Post‐Silurian of Northern Shan States: The misleading traditional term Plateau Limestone ('Devonian‐Permian') is abandoned. The Devonian part is to be known as Shan Dolomite—with the Eifelian Padaukpin Limestone and the Givetian Wetwin Shale as subordinate member formations—and the disconformable Permian as Tonbo Limestone. Carboniferous formations are absent.

Upper Palaeozoic of Karen State: The sequence begins with the fossiliferous Middle to Upper Carboniferous Taungnyo Group resting unconformably on the epimetamorphic Mergui ‘Series’ (probably Silurian) and on older metamorphics. There is no evidence of Devonian rocks. The Permian is represented by widespread, but discontinuous, reef complexes, known as Moulmein Limestone, which rest unconformably on the moderately folded Carboniferous. The earliest beds of the Permian are of the Artinskian Epoch. No Mesozoic sequence is known west of the Dawna Range.

Mesozoic of Northern Shan States: Triassic and Jurassic are present, but the Cretaceous is absent. The Bawgyo Group (Upper Triassic and Rhaetic) rests unconformably on the Palaeozoic and consists of the Pangno Evaporites (below) and the Napeng Formation. The Jurassic Namyau Group, consisting of the Tati Limestone (Bathonian‐Callovian) and the Hsipaw Redbeds (Middle to Upper Jurassic) follows unconformably.

Origin of folding of Mesozoic: The intense primary folding of the Triassic and Jurassic sequences in the Hsipaw region is due to gravity‐sliding (Gleittektonik) on the Upper Triassic evaporites. Secondary complications were introduced by diapiric displacements which are probably continuing. Neither of these tectonic phases shows a significant causal relationship with the Alpine Orogeny sensu stricto. The latter is at best responsible for minor overprinting, chiefly through broad warping and horst‐and‐graben fracturing of the Shan Dolomite with locally considerable vertical displacements. There are no Alpine fold structures in the region. Geotectonically, it was a well‐consolidated frontal block of the Alpidic hinterland.  相似文献   
214.
The Laki eruption involved 10 fissure-opening episodes thatproduced 15·1 km3 of homogeneous quartz-tholeiite magma.This study focuses on the texture and chemistry of samples fromthe first five episodes, the most productive period of the eruption.The samples comprise pumiceous tephra clasts from early falloutdeposits and lava surface samples from fire-fountaining andcone-building activity. The fluid lava core was periodicallyexposed at the surface upon lobe breakout, and its characteristicsare preserved in glassy selvages from the lava surface. In allsamples, plagioclase is the dominant mineral phase, followedby clinopyroxene and then olivine. Samples contain <7 vol.% of euhedral phenocrysts (>100 µm) with primitivecores [An* = 100 x Ca/(Ca + Na) >70; Fo > 75; En* = 100x Mg/(Mg + Fe) >78] and more evolved rims, and >10 vol.% of skeletal, densely distributed groundmass crystals (<100µm), which are similar in composition to phenocryst rims(tephra: An*58–67, Fo72–78, En*72–81; lava:An*49–70, Fo63–78, En57–78). Tephra and lavahave distinct vesicularity (tephra: >40 vol. %; lava: <40vol. %), groundmass crystal content (tephra: <10 vol. %;lava: 20–30 vol. %), and matrix glass composition (tephra:5·4–5·6 wt % MgO; lava: 4·3–5·0wt % MgO). Whole-rock and matrix glass compositions define atrend consistent with liquid evolution during in situ crystallizationof groundmass phases. Plagioclase–glass and olivine–glassthermometers place the formation of phenocryst cores at 10 kmdepth in a melt with 1 wt % H2O, at near-liquidus temperatures(1150°C). Phenocryst rims and groundmass crystals formedclose to the surface, at 10–40°C melt undercoolingand in an 10–20°C cooler drier magma (0–0·1wt % H2O), causing an 10 mol % drop in An content in plagioclase.The shape, internal zoning and number density of groundmasscrystals indicate that they formed under supersaturated conditions.Based on this information, we propose that degassing duringascent had a major role in rapidly undercooling the melt, promptingintensive shallow groundmass crystallization that affected themagma and lava rheology. Petrological and textural differencesbetween tephra and lava reflect variations in the rates of magmaascent and the timing of surface quenching during each eruptiveepisode. That in turn affected the time available for crystallizationand subsequent re-equilibration of the melt to surface (degassed)conditions. During the explosive phases, the rates of magmaascent were high enough to inhibit crystallization, yieldingcrystal-poor tephra. In contrast, pervasive groundmass crystallizationoccurred in the lava, increasing its yield strength and causinga thick rubbly layer to form during flow emplacement. Lava selvagescollected across the flow-field have strikingly homogeneousglass compositions, demonstrating the high thermal efficiencyof fluid lava transport. Cooling is estimated as 0·3°C/km,showing that rubbly surfaced flows can be as thermally efficientas tube-fed phoehoe lavas. KEY WORDS: lava; crystallization; basalt; cooling rate; pressure; geobarometry; PT conditions; plagioclase; degassing; Laki, Iceland  相似文献   
215.
大兴安岭南段黄岗梁火山-侵出隆起由火山灰流相的流纹质晶屑凝灰岩、侵出相的岩穹(流纹质碎斑熔岩)和浅成侵入相的斑状二长花岗岩构成,它们的SHRIMP锆石U-Pb定年结果分别为140.27±0.93 Ma、140.41±0.92 Ma和141.75±0.96 Ma,均属早白垩世初期岩浆活动的产物。3个岩相的同位素年龄在误差范围内一致,表明其间没有明显的间断,为粘稠的富晶岩浆(晶粥)连续作用的产物。这些火山-侵入杂岩属高钾钙碱性系列,主要为准铝质-过铝质岩石,它们的εNd(t)变化范围很小,为-0.43~-0.08,相应的二阶段模式年龄为0.98~0.96 Ga,表明其应起源于相同的源区。岩浆作用产物表现出从早到晚SiO2和K2O含量呈连续降低的趋势,不同岩相间成分上有一定的互补关系,暗示可能是由成分分带的岩浆房近于逐层排出/侵位形成流纹质晶屑凝灰岩和碎斑熔岩,残留岩浆充填到火山根部及火山机构周边的环状裂隙中冷却固结形成斑状二长花岗岩。该火山-侵入杂岩具有A型花岗岩特征,地球化学上均表现为富集Rb、Th、U等大离子亲石元素,强烈亏损Ti、Nb、Ta...  相似文献   
216.
217.
火山灾害区划是防御和减轻火山灾害的一种有效的方法.以中国境内规模最大、喷发危险性最高、潜在火山灾害最强的长白山天池火山为例,回顾我国火山灾害区划研究历史,讨论典型火山喷发活动引起的主要火山灾害类型、成灾机制和灾害效应,总结不同历史阶段各种不同类型火山灾害区划图的优缺点,并结合目前国际上火山灾害区划的研究现状和编图技术,对我国未来编制具有概率含义的火山灾害区划图的思路提出展望.  相似文献   
218.
Seismic experiments were conducted on Showa-Shinzan, a parasitic lava dome of volcano Usu, Hokkaido, which was formed during 1943–1945 activity. Since we found that firework shots fired on the ground can effectively produce seismic waves, we placed many seismometers on and around the dome during the summer festivals in 1984 and 1985. The internal structure had been previously studied using a prospecting technique employing dynamite blasts in 1954. The measured interval velocity across the dome in 1984 ranges 1.8–2.2 km/s drastically low compared to the results (3.0–4.0 km/s) in 1954; in addition, the velocity is 0.3–0.5 km/s higher than that in the surrounding area. The variation of the observed first arrival amplitudes can be explained by geometrical spreading in the high velocity lava dome. These observations show a marked change in the internal physical state of the dome corresponding to a drop in the measured highest temperature at fumaroles on the dome from 800°C in 1947 to 310°C in 1986.  相似文献   
219.
The shallow intrusive bodies and lava flows emplaced within the Permian upper red unit in the Anayet Massif, represent a magmatic episode that occurred about 255 Ma (Saxonian) in the Pyrenean Axial Zone (northern Spain). Anisotropy of magnetic susceptibility (AMS) measurements, in both igneous bodies and their host rocks, allow us to infer the existence of magnetic fabrics of tectonic origin linked to the main cleavage-related folding episode. The relationship between the susceptibility axes and the field structures is the criterion that permits to differentiate normal from inverse magnetic fabrics in the igneous samples. The structural interpretation of all AMS data taken from the igneous bodies and sedimentary host rocks, is in accordance with a folding model which include: (i) flattening associated with cleavage formation during fold amplification in incompetent layers (host pelites), responsible for a magnetic lineation at high angles with respect to the regional folding axis and (ii) buckling in competent (conglomerates and igneous bodies) levels, responsible for a magnetic lineation parallel to the regional fold axes.  相似文献   
220.
Yield strength is an important property of particle–fluid suspensions. In basaltic lavas that crystallize during flow emplacement, the onset of yield strength may result in threshold transitions in flow behavior and flow surface morphology. However, yield strength–crystallinity relations are poorly known, particularly in geologic suspensions, where difficulties of experimental and field measurements have limited data acquisition in the subliquidus temperature range. Here we describe two complementary experimental approaches designed to examine the effect of particle shape on the low-shear yield strength of subliquidus basalts. The first involves melting cubes of holocrystalline basalt samples with different initial textures to determine the temperature (crystallinity) at which these samples lose their cubic form. These experiments provide information on the minimum crystal volume fractions (0.20<φ<0.35) required to maintain the structual integrity of the cube. The second set of experiments uses suspensions of corn syrup and neutrally buoyant particles to isolate the effect of particle shape on yield strength development. From these experiments, we conclude that the shape is important in determining the volume fraction range over which suspensions exhibit a finite yield strength. As anisotropic particles may orient during flow, the effect of particle shape will be controlled by the orientation distribution of the constituent particles. We find that the so-called ‘excluded volume’ can be used to relate results of experiments on anisotropic particles to those of suspensions of spherical particles. Recent measurements of yield strength onset in basaltic melts at crystal volume fractions near 0.25 are consistent with our observations that crystal frameworks develop at low to moderate crystal volume fractions when crystals are anisotropic (e.g. plagioclase). We further suggest that conditions leading to yield strength onset at low crystallinities include rapid cooling (increased crystal anisotropy), heterogeneous nucleation (which promotes extensive crystal clustering and large cluster anisotropy) and static conditions (random crystal orientations).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号